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Abstract: Aryl-substituted propargylic N-hydroxyureas cyclize in the presence of 
catalytic Pd(OAc)2 to yield 2,3-dihydroisoxazoles. © 1997 Elsevier Science Ltd. 

Abbott Laboratories, along with many other research groups, has been actively investigating substituted 

hydroxylamiae derivatives as. inhibitors of the enzyme 5-1ipoxygenase (5-LO). These compounds represent a 

promising new clinical treatment for a variety of leukotriene-mediated disorders such as asthma, inflammatory 

bowel disease, and rheumatoid arthritis. The arylalkyl N-hydroxyurea substructure of Abbott's first generation 

5-LO inhibitor, Zileuton (1), 1 is common to a number of other inhibitor candidates. 2 Research subsequently 

shifted to compounds which incorporate an acetylenic or vinylic "spacer" between the aryl ring and the 

alkylhydroxylamine derivative) Compound 2a, A-78773 (previously under development at Abbott), is typical 

of these compounds. Rapid access to compounds of type 2 is readily accomplished by using a variant of the 

Castro-Stephens coupling 4'5 of an aryl halide (3) and propargylic N-hydroxyurea 4. 2*. 6 
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During the process development of these second generation 5-LO inhibitors, 2,3-dihydroisoxazoles (5)  

were detected as significant by-products in the palladium coupling reactions. Initially, it was found that the 

formation of these compounds could be limited by attenuating the activity of the catalyst, Pd(CH3CN)2CI 2, 
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Table l: Cyclization of Propargylie N-Hydroxyureas 

Starting Material (Ar = ) Product Yield a 

~ 5a  

2b 5b 

OzN~/'~'2e O z N ~  NH2 5e 56 (99) b 
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O 
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Notes: a All compounds were isolated by silica gel chromatography and characterized by lH and 13C NMR, IR, and 

MS. b Higher yield based on recovered starting material. 

with PhsP. We felt however that the formation of these 2,3-dihydroisoxazoles represented an opportunity to 

explore the chemistry of the N-hydroxyurea moiety, a substituent comn~n to many potential 5-LO inhibitors. 

We therefore set out to determine the optimal conditions for their formation. As anticipated, we found it was 

possible to increase the yield of dihydroisoxazoles to a certain extent by the use of a stronger catalyst, like 

Pd(OAc) 2, or more robust reaction conditions, such as higher temperatures and larger catalyst loadings. 
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Unfortunately, these efforts also generated considerably more degradation products. Not surprisingly 

therefore, we obtained the best yields when the intermediate N-hydroxyurea (2) was f'n'st isolated and then 

separately exposed to the cyclization conditions. As illustrated in Table 1, a variety of aryl-substituted 

propargylic N-hydroxyureas (2) undergo facile cyclization to the corresponding 2,3-dihydroisoxazoles (5). 

The products of other cyclization pathways (leading to the formation of 6-membered heterocycles) were not 

observed. Although racemic N-hydroxyurea 4 was used for this study, we expect cyclizations with 

enantiomerically pure material to proceed with retention of configuration. 

We were surprised to find that this retrosynthetic disconnection of the 2,3-dihydroisoxazole ring system 

is not one commonly employed. 7 The majority of synthetic approaches to dihydroisoxazoles tend to fall into 

two groups: the [2+3] dipolar cycloaddition of nitrones and alkynes g constitutes the majority of these synthetic 

methods, while the functionalization or reduction of isoxazolium salts 9 accounts for most of the remainder. A 

small number of other methods have been reported, with very few instances of a functionalized hydroxylamine 

cyclizing onto an adjacent alkyne, t° In these few methods, strong base is typically employed to facilitate the ring 

closure. Although there are examples of this type of electrophilically-induced cyclization with respect to other 

heteroatoms, H we were unable to find an example utilizing a hydroxylamine. 

The cyclizations described proceeded using 0.05 to 0.20 equiv of Pd(OAc) 2 in the presence of a slight 

molar excess of F~N in THF. Acetonitrile was added to the reaction mixture to improve the solubility of certain 

N-hydroxyureas. These cyclizations proceeded slowly, typically requiring from 12-48 hrs to go to completion. 

The rate of reaction can be increased by using larger amounts of catalyst or with gentle heating (30 - 35 °C), 

however these can result in more reaction by-products. Under the conditions described, the reactions were 

reasonably clean; the major by-products being small amounts of the corresponding isoxazoles (6), unreacted 

starting material (in certain instances) and a number of trace unidentified compounds. Despite their presence in 

small quantites (1-10% depending upon the case), the formation of aryl-substituted isoxazoles (6) was 

intriguing. Although we were unable to find a simple method to prevent their formation, we did find that higher 

reaction temperatures, and larger excesses of base tended to increase the amount of 6 formed. 

We expected a certain degree of decomposition in each case, as we had found earlier that the parent 

compound, N-hydroxyurea 4, underwent extensive degradation to unidentified products when exposed to 

Pd(OAc) 2. It is therefore likely that only sufficiently activated N - h y d r o x y ~  of type 2 will cleanly participate 

in this chemistry. It is noteworthy that aromatic rings substituted with either electron-donating or electron- 

withdrawing groups undergo cyclization. We did observe, however, that nitro-derivative 2c cyclized at a 

considerably slower rate than the other examples. The biological activity of the dihydroisoxazoles formed in 

these cyclizations is unknown. A typical experimental is described below, t: 

Thienyl Dihydroisoxazole 5e. N-Hydroxyurea 2e la (1.96 g, 9.33 mmol), Pd(OAc) 2 (0.10 g, 0.49 mmol, 

0.052 equiv), Et3N (1.4 mL, 10 retool, 1.1 equiv), 10 mL of THF and 10 mL of CH3CN were placed in a 50- 

mL, one-necked, round-bottomed flask. The reaction mixture was stirred under a nitrogen atmosphere at rt. 

When the reaction was deemed complete by TLC (about 24 hours), the entire reaction mixture was filtered 

through a I inch plug of silica gel, which was rinsed 3 times with 25 mL of ethyl acetate. This filtrate was 
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evaporated to afford 1.68 g of a dark colored oil. The oil was purified by chromatography on silica gel (elution 

with 50% ethyl acetate in heptanes) affording 0.98 g (50%) of a colorless solid, mp 95 - 96 °C (uncorrected). 

1H NMR (300 MHz, CDCI3) f5:7.34 (dd, 4j=l.lHz, 3J=5.1Hz, IH), 7.24 (dd, 4J=I.1Hz, 3J=3.7Hz, 1H), 

7.05 (dd, 3J=3.7Hz, 3J=5.1Hz, 1H), 5.60 (br s, 2H), 5.32 (d, 3j=2.7Hz, 1H), 5.24 (dq, 3j=2.7Hz, 3j=6.3Hz, 

IH), 1.40 (d, 3j=6.3Hz, 3H). t3C NMR (75 MHz, CDCI3) ~: 162.8, 147.0, 129.1, 127.3, 126.3, 125.6, 

99.0, 61.5, 22.2. MS (CI, NH3) 421 (2M + H ÷) , 228 (M + NH4*), 211 (M + H+). Anal Calc'd for 

CgHloN202S: C, 51.41; H, 4.79; N 13.32; S, 15.24. Found: C, 51.47; H, 4.77; N 13.03; S, 15.01. 
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